587 lines
23 KiB
TypeScript
587 lines
23 KiB
TypeScript
import { ipcMain, BrowserWindow } from "electron";
|
||
import { spawn } from "child_process";
|
||
import { showPrompt } from "../utils/tools";
|
||
import { preload, indexHtml, ELECTRON_RENDERER_URL } from "../config";
|
||
import os from "os";
|
||
import http from "http";
|
||
let InstallWindows: BrowserWindow | null = null;
|
||
|
||
export function setupWorkflowHandlers() {
|
||
let lastJobSummary = "这是我们今天介绍的第一个岗位";
|
||
|
||
// 存储用户确认回调的Map
|
||
const modelDownloadCallbacks = new Map<string, { confirm: Function, reject: Function }>();
|
||
|
||
// 打开安装窗口
|
||
ipcMain.handle("open-install-window", async (_, args) => {
|
||
try {
|
||
if (InstallWindows) {
|
||
InstallWindows.focus();
|
||
showPrompt("下载已打开", "info");
|
||
return { success: true };
|
||
}
|
||
const { width, height, path } = args;
|
||
let installUrl = `${ELECTRON_RENDERER_URL}/#/${path}`;
|
||
console.log(installUrl);
|
||
InstallWindows = new BrowserWindow({
|
||
title: "模型下载",
|
||
width,
|
||
height,
|
||
minimizable: false, // 是否可以最小化
|
||
maximizable: false, // 是否可以最小化
|
||
closable: true, // 窗口是否可关闭
|
||
alwaysOnTop: false, // 窗口是否永远在别的窗口的上面
|
||
webPreferences: {
|
||
preload,
|
||
nodeIntegration: true,
|
||
contextIsolation: false,
|
||
},
|
||
});
|
||
// InstallWindows.webContents.openDevTools();
|
||
InstallWindows.on("closed", () => {
|
||
InstallWindows = null;
|
||
});
|
||
if (ELECTRON_RENDERER_URL) {
|
||
InstallWindows.loadURL(installUrl);
|
||
} else {
|
||
InstallWindows.loadFile(indexHtml, { hash: `/${path}` });
|
||
}
|
||
return { success: true };
|
||
} catch (error: any) {
|
||
return { success: false, error: error.message };
|
||
}
|
||
});
|
||
|
||
// 监听来自渲染器进程的 'install-ollama' 事件
|
||
ipcMain.handle("install-ollama-and-model", async (event) => {
|
||
const webContents = event.sender; // 获取发送事件的窗口
|
||
const platform = os.platform();
|
||
const modelToPull = "qwen3:8b";
|
||
|
||
const sendStatus = (status) => {
|
||
if (webContents && !webContents.isDestroyed()) {
|
||
webContents.send("install-progress", { status });
|
||
}
|
||
};
|
||
|
||
try {
|
||
sendStatus("Checking Ollama installation...");
|
||
try {
|
||
await streamCommand(
|
||
"ollama",
|
||
["-v"],
|
||
webContents,
|
||
"install-progress",
|
||
);
|
||
sendStatus("Ollama is already installed.");
|
||
} catch (error) {
|
||
// Ollama 未安装,执行安装
|
||
sendStatus("Ollama not found. Starting installation...");
|
||
|
||
if (platform === "darwin" || platform === "linux") {
|
||
// macOS / Linux - 使用官方的 curl 脚本
|
||
const installCommand =
|
||
"curl -fsSL https://ollama.com/install.sh | sh";
|
||
await streamCommand(
|
||
"sh",
|
||
["-c", installCommand],
|
||
webContents,
|
||
"install-progress",
|
||
);
|
||
} else if (platform === "win32") {
|
||
// Windows - 使用 PowerShell 下载并静默安装
|
||
const psScript = `
|
||
$ProgressPreference = 'SilentlyContinue';
|
||
$tempPath = [System.IO.Path]::Combine($env:TEMP, 'OllamaSetup.exe');
|
||
Write-Host 'Downloading OllamaSetup.exe...';
|
||
Invoke-WebRequest -Uri 'https://ollama.com/download/OllamaSetup.exe' -OutFile $tempPath;
|
||
Write-Host 'Download complete. Starting silent installer...';
|
||
Start-Process -FilePath $tempPath -ArgumentList '/S' -Wait;
|
||
Write-Host 'Installation complete. Cleaning up...';
|
||
Remove-Item $tempPath;
|
||
Write-Host 'Done.';
|
||
`;
|
||
await streamCommand(
|
||
"powershell",
|
||
[
|
||
"-ExecutionPolicy",
|
||
"Bypass",
|
||
"-NoProfile",
|
||
"-Command",
|
||
psScript,
|
||
],
|
||
webContents,
|
||
"install-progress",
|
||
);
|
||
} else {
|
||
throw new Error(`Unsupported platform: ${platform}`);
|
||
}
|
||
sendStatus("Ollama installation complete.");
|
||
}
|
||
|
||
// --- 步骤 2: 拉取模型 ---
|
||
sendStatus(
|
||
`Pulling model: ${modelToPull}... (This may take a while)`,
|
||
);
|
||
await streamCommand(
|
||
"ollama",
|
||
["pull", modelToPull],
|
||
webContents,
|
||
"install-progress",
|
||
);
|
||
sendStatus(`Model ${modelToPull} pull complete.`);
|
||
|
||
return {
|
||
success: true,
|
||
message: "Installation and model pull successful.",
|
||
};
|
||
} catch (error: any) {
|
||
console.error(error);
|
||
sendStatus(`Error: ${error.message}`);
|
||
return { success: false, message: error.message };
|
||
}
|
||
});
|
||
|
||
// 将整个工作流封装在 IPC Handler 中
|
||
ipcMain.handle("run-job-workflow", async (_, userQuery) => {
|
||
console.log("工作流: 正在准备工作...");
|
||
let currentJobData = userQuery || {};
|
||
|
||
let answerText = "";
|
||
|
||
try {
|
||
console.log("工作流: 正在调用 Ollama 生成脚本...");
|
||
|
||
const systemPromptTemplate = `# 角色 (Role) \n你是一个顶级的招聘KOL和直播带岗专家。你的风格是:专业、中立、风趣,能一针见血地分析岗位优劣。你不是一个AI助手,你就是这个角色。 \n\n# 上下文 (Context) \n我正在运行一个自动化工作流。我会\"一个一个\"地喂给你岗位数据。\n\n # 任务 (Task) \n你的任务是执行以下两个操作,并严格按照“输出格式”返回内容:\n1. 生成口播稿:根据【输入数据A】(上一个岗位的摘要) 和【输入数据B】(当前岗位的JSON),生成一段完整的、约90秒的口播稿。\n2. 生成新摘要:为【输入数据B】的“当前岗位”生成一个简短的摘要(例如:XX公司的XX岗),以便在下一次调用时使用。\n\n# 核心指令 (Core Instruction)\n### 口播稿的生成规则 (Rules for the Script) \n1. 衔接:口播稿必须以一个自然的“过渡句”开头(基于【输入数据A】)。 特殊情况:如果【输入数据A】是“这是我们今天介绍的第一个岗位。”,则开头应是“热场”或“总起”,而不是衔接。 \n2. 内容:必须介绍岗位名称 \`jobTitle\`。 \n3. 提炼:从 \`jobLocation\`, \`companyName\`, \`education\`,\`experience\`,\`scale\` 中提炼“亮点 (Pro)”。 \n4. 翻译:用“人话”翻译 \`description\`。 \n5. 视角:你是在“评测”这个岗位,而不是在“推销”。\n\n### 口播稿的纯文本要求 (Pure Text Rules for the Script ONLY) \n**[重要]** 以下规则 *仅适用于* “口播稿”部分,不适用于“新摘要”部分: \n1. 绝不包含任何Markdown格式 (\`**\`, \`#\`)。 \n2. 绝不包含任何标签、括号或元数据 (\`[]\`, \`()\`)。 \n3. 绝不包含任何寒暄、问候、或自我介绍 (例如 \"你好\", \"当然\")。 \n4. 必须是可以直接朗读的、完整的、流畅的纯文本。\n\n# 输入数据 (Input Data)\n\n## 输入数据A (上一个岗位摘要) \n${lastJobSummary}\n\n## 输入数据B (当前岗位JSON)\n\`\`\`json\n${JSON.stringify(currentJobData, null, 2)}\n\`\`\`\n\n# 输出格式 (Output Format)\n**[绝对严格的指令]** \n你必须严格按照下面这个“两部分”格式输出,使用 \`---NEXT_SUMMARY---\` 作为唯一的分隔符。 绝不在分隔符之外添加任何多余的文字、解释或Markdown。 \n\n[这里是AI生成的、符合上述所有“纯文本要求”的完整口播稿] \n---NEXT_SUMMARY--- \n[这里是AI为“当前岗位”生成的简短新摘要]`;
|
||
|
||
answerText = await runOllamaNonStream(
|
||
systemPromptTemplate,
|
||
"qwen3:8b",
|
||
);
|
||
|
||
if (!answerText) {
|
||
throw new Error("Ollama 返回为空");
|
||
}
|
||
} catch (e) {
|
||
return "抱歉,AI 模型在生成脚本时出错。";
|
||
}
|
||
|
||
try {
|
||
console.log("工作流: 正在解析 AI 输出...");
|
||
|
||
let script = "抱歉,AI没有按预定格式返回脚本,请稍后重试。";
|
||
let summary = "这是我们今天介绍的第一个岗位。"; // 这是一个安全的“重置”摘要
|
||
|
||
if (answerText && typeof answerText === "string") {
|
||
const parts = answerText.split("---NEXT_SUMMARY---");
|
||
|
||
if (parts[0] && parts[0].trim() !== "") {
|
||
script = parts[0].trim();
|
||
}
|
||
|
||
if (parts[1] && parts[1].trim() !== "") {
|
||
summary = parts[1].trim();
|
||
}
|
||
}
|
||
|
||
console.log("工作流: 正在更新状态...");
|
||
lastJobSummary = summary; // 关键:更新主进程中的状态
|
||
|
||
console.log("工作流: 完成,返回口播稿。");
|
||
return { success: true, data: script }; // 将最终的“口播稿”返回给渲染进程
|
||
} catch (e: any) {
|
||
console.error("代码运行或变量更新节点出错:", e);
|
||
return "抱歉,处理 AI 响应时出错。";
|
||
}
|
||
});
|
||
|
||
// 检查 Ollama 服务器是否正在运行
|
||
ipcMain.handle("check-ollama-status", async () => {
|
||
return await checkOllamaServer();
|
||
});
|
||
|
||
// 检查指定模型是否存在
|
||
ipcMain.handle("check-model-exists", async (_, modelName = "qwen3:8b") => {
|
||
try {
|
||
const response = await fetch("http://127.0.0.1:11434/api/tags", {
|
||
method: "GET",
|
||
headers: { "Content-Type": "application/json" },
|
||
});
|
||
|
||
if (!response.ok) {
|
||
throw new Error(`Ollama API error: ${response.statusText}`);
|
||
}
|
||
|
||
const data = await response.json();
|
||
const models = data.models || [];
|
||
|
||
// 检查模型是否存在于本地
|
||
const modelExists = models.some((model: any) => model.name === modelName);
|
||
|
||
return {
|
||
success: true,
|
||
exists: modelExists,
|
||
models: models.map((m: any) => ({ name: m.name, size: m.size, modified_at: m.modified_at }))
|
||
};
|
||
} catch (error: any) {
|
||
console.error("Check model error:", error);
|
||
return {
|
||
success: false,
|
||
exists: false,
|
||
error: error.message
|
||
};
|
||
}
|
||
});
|
||
|
||
// 加载模型(检查ollama状<61><E78AB6><EFBFBD>,下载模型如果不存在)
|
||
ipcMain.handle("load-model", async (_, modelName = "qwen3:8b") => {
|
||
const webContents = BrowserWindow.getFocusedWindow()?.webContents;
|
||
|
||
const sendStatus = (status: string, type = "info") => {
|
||
if (webContents && !webContents.isDestroyed()) {
|
||
webContents.send("model-load-progress", {
|
||
status,
|
||
type,
|
||
timestamp: new Date().toISOString()
|
||
});
|
||
}
|
||
};
|
||
|
||
// 发送询问是否下载模型的消息
|
||
const askUserToDownload = () => {
|
||
if (webContents && !webContents.isDestroyed()) {
|
||
webContents.send("model-download-confirm", {
|
||
modelName,
|
||
message: `模型 ${modelName} 不存在,是否下载?`,
|
||
timestamp: new Date().toISOString()
|
||
});
|
||
}
|
||
};
|
||
|
||
try {
|
||
sendStatus("正在检查Ollama服务状态...", "info");
|
||
|
||
// 1. 检查Ollama是否运行
|
||
const isOllamaRunning = await checkOllamaServer();
|
||
if (!isOllamaRunning) {
|
||
sendStatus("Ollama服务未运行,正在启动...", "warning");
|
||
|
||
try {
|
||
// 尝试启动Ollama服务
|
||
await runCommand("ollama", ["ps"]);
|
||
await new Promise(resolve => setTimeout(resolve, 3000));
|
||
|
||
const isRunningNow = await checkOllamaServer();
|
||
if (!isRunningNow) {
|
||
throw new Error("无法启动Ollama服务,请手动启动");
|
||
}
|
||
sendStatus("Ollama服务启动成功", "success");
|
||
} catch (error: any) {
|
||
sendStatus(`启动Ollama服务失败: ${error.message}`, "error");
|
||
return {
|
||
success: false,
|
||
message: `Ollama服务启动失败: ${error.message}`,
|
||
downloaded: false
|
||
};
|
||
}
|
||
} else {
|
||
sendStatus("Ollama服务正在运行", "success");
|
||
}
|
||
|
||
// 2. 检查模型是否存在
|
||
sendStatus(`正在检查模型 ${modelName} 是否存在...`, "info");
|
||
|
||
const modelCheckResult = await new Promise<{ exists: boolean, models: any[] }>((resolve, reject) => {
|
||
fetch("http://127.0.0.1:11434/api/tags", {
|
||
method: "GET",
|
||
headers: { "Content-Type": "application/json" },
|
||
})
|
||
.then(response => response.json())
|
||
.then(data => {
|
||
const models = data.models || [];
|
||
const modelExists = models.some((model: any) => model.name === modelName);
|
||
resolve({ exists: modelExists, models });
|
||
})
|
||
.catch(reject);
|
||
});
|
||
|
||
if (modelCheckResult.exists) {
|
||
sendStatus(`模型 ${modelName} 已存在,无需下载`, "success");
|
||
return {
|
||
success: true,
|
||
message: `模型 ${modelName} 已就绪`,
|
||
downloaded: false
|
||
};
|
||
}
|
||
|
||
// 3. 模型不存在,询问用户是否下载
|
||
askUserToDownload();
|
||
|
||
// 等待用户确认
|
||
const userConfirmed = await new Promise<boolean>((resolve, reject) => {
|
||
const timeout = setTimeout(() => {
|
||
modelDownloadCallbacks.delete(modelName);
|
||
resolve(false); // 30秒超时自动取消
|
||
}, 30000);
|
||
|
||
// 存储回调函数
|
||
modelDownloadCallbacks.set(modelName, {
|
||
confirm: () => {
|
||
clearTimeout(timeout);
|
||
resolve(true);
|
||
},
|
||
reject: (error: any) => {
|
||
clearTimeout(timeout);
|
||
reject(error);
|
||
}
|
||
});
|
||
});
|
||
|
||
if (!userConfirmed) {
|
||
sendStatus("用户取消了模型下载", "info");
|
||
return {
|
||
success: false,
|
||
message: `用户取消了 ${modelName} 模型的下载`,
|
||
downloaded: false
|
||
};
|
||
}
|
||
|
||
// 4. 用户确认,开始下载模型
|
||
sendStatus(`开始下载模型 ${modelName},这可能需要一些时间...`, "info");
|
||
|
||
await new Promise<void>((resolve, reject) => {
|
||
const process = spawn("ollama", ["pull", modelName], { shell: true });
|
||
|
||
const sendProgress = (data: any) => {
|
||
if (webContents && !webContents.isDestroyed()) {
|
||
webContents.send("model-load-progress", {
|
||
status: data.toString().trim(),
|
||
type: "download",
|
||
timestamp: new Date().toISOString()
|
||
});
|
||
}
|
||
};
|
||
|
||
process.stdout.on("data", sendProgress);
|
||
process.stderr.on("data", sendProgress);
|
||
|
||
process.on("close", (code) => {
|
||
if (code === 0) {
|
||
resolve();
|
||
} else {
|
||
reject(new Error(`模型下载失败,退出码: ${code}`));
|
||
}
|
||
});
|
||
|
||
process.on("error", (err: any) => {
|
||
reject(new Error(`启动下载进程失败: ${err.message}`));
|
||
});
|
||
});
|
||
|
||
sendStatus(`模型 ${modelName} 下载完成!`, "success");
|
||
|
||
return {
|
||
success: true,
|
||
message: `模型 ${modelName} 下载并加载成功`,
|
||
downloaded: true
|
||
};
|
||
|
||
} catch (error: any) {
|
||
console.error("Load model error:", error);
|
||
sendStatus(`加载模型失败: ${error.message}`, "error");
|
||
return {
|
||
success: false,
|
||
message: error.message,
|
||
downloaded: false
|
||
};
|
||
}
|
||
});
|
||
|
||
// 处理用户对模型下载的确认响应
|
||
ipcMain.on("model-download-confirm-response", (_event, data) => {
|
||
const { modelName, confirmed } = data;
|
||
const callback = modelDownloadCallbacks.get(modelName);
|
||
|
||
if (callback) {
|
||
modelDownloadCallbacks.delete(modelName);
|
||
if (confirmed) {
|
||
callback.confirm();
|
||
} else {
|
||
callback.reject(new Error("用户取消了模型下载"));
|
||
}
|
||
}
|
||
});
|
||
|
||
// 润色文本的处理器
|
||
ipcMain.handle("polish-text", async (_, text) => {
|
||
try {
|
||
if (!text || typeof text !== 'string' || text.trim() === '') {
|
||
return {
|
||
success: false,
|
||
error: "输入文本不能为空"
|
||
};
|
||
}
|
||
|
||
const systemPrompt = `你是一个专业的文本润色专家。请将以下文本进行润色,使其更加流畅、自然、专业。要求:
|
||
1. 保持原意不变
|
||
2. 使语言更加流畅自然
|
||
3. 提升表达的准确性
|
||
4. 适合直播场合使用
|
||
5. 保持简洁明了
|
||
|
||
请直接返回润色后的文本,不要添加任何其他说明或解释。
|
||
|
||
原文:${text.trim()}`;
|
||
|
||
const polishedText = await runOllamaNonStream(systemPrompt, "qwen3:8b");
|
||
|
||
if (!polishedText) {
|
||
throw new Error("AI模型返回为空");
|
||
}
|
||
|
||
return {
|
||
success: true,
|
||
data: polishedText.trim()
|
||
};
|
||
} catch (error: any) {
|
||
console.error("润色文本失败:", error);
|
||
return {
|
||
success: false,
|
||
error: error.message || "润色服务出现错误"
|
||
};
|
||
}
|
||
});
|
||
|
||
|
||
// 处理器:检查服务,如果没运行,就用一个轻量命令唤醒它
|
||
ipcMain.handle("ensure-ollama-running", async () => {
|
||
let isRunning = await checkOllamaServer();
|
||
|
||
if (isRunning) {
|
||
return {
|
||
success: true,
|
||
message: "Ollama服务器已在运行.",
|
||
};
|
||
}
|
||
|
||
// 服务未运行。
|
||
// 我们运行 'ollama ps'。这个命令会与服务通信,
|
||
// 如果服务没启动,Ollama CLI 会自动启动它。
|
||
try {
|
||
await runCommand("ollama", ["ps"]);
|
||
|
||
// 给服务一点启动时间 (例如 2 秒)
|
||
await new Promise((resolve) => setTimeout(resolve, 2000));
|
||
|
||
// 再次检查
|
||
isRunning = await checkOllamaServer();
|
||
if (isRunning) {
|
||
return {
|
||
success: true,
|
||
message: "Ollama 已在后台启动",
|
||
};
|
||
} else {
|
||
return {
|
||
success: false,
|
||
message: "服务启动失败",
|
||
};
|
||
}
|
||
} catch (error: any) {
|
||
console.error("错误:", error);
|
||
return {
|
||
success: false,
|
||
message: `错误: ${error.message}`,
|
||
};
|
||
}
|
||
});
|
||
}
|
||
|
||
// 辅助函数:检查 Ollama API 是否可访问
|
||
function checkOllamaServer() {
|
||
return new Promise((resolve) => {
|
||
// 默认端口是 11434
|
||
const req = http.get("http://127.0.0.1:11434/", (res) => {
|
||
// "Ollama is running" 的响应码是 200
|
||
resolve(res.statusCode === 200);
|
||
});
|
||
|
||
// 如果连接被拒绝 (ECONNREFUSED),则服务未运行
|
||
req.on("error", () => {
|
||
resolve(false);
|
||
});
|
||
});
|
||
}
|
||
|
||
// 辅助函数:运行一个简单的命令并等待它完成
|
||
function runCommand(command, args) {
|
||
return new Promise((resolve, reject) => {
|
||
const process = spawn(command, args, { shell: true });
|
||
process.on("close", (code) => {
|
||
if (code === 0) {
|
||
resolve(null);
|
||
} else {
|
||
reject(new Error(`Command failed with code ${code}`));
|
||
}
|
||
});
|
||
process.on("error", (err) => reject(err));
|
||
});
|
||
}
|
||
// 这是一个非流式的 Ollama 助手函数
|
||
async function runOllamaNonStream(prompt, model = "qwen3:8b") {
|
||
try {
|
||
const response = await fetch("http://127.0.0.1:11434/api/chat", {
|
||
method: "POST",
|
||
headers: { "Content-Type": "application/json" },
|
||
body: JSON.stringify({
|
||
model: model,
|
||
messages: [{ role: "user", content: prompt }],
|
||
stream: false, // 关键:关闭流式
|
||
}),
|
||
});
|
||
|
||
if (!response.ok) {
|
||
throw new Error(`Ollama API error: ${response.statusText}`);
|
||
}
|
||
|
||
const data = await response.json();
|
||
|
||
// data.message.content 包含了完整的 AI 回复
|
||
return data.message.content;
|
||
} catch (error) {
|
||
console.error("Ollama Chat Error:", error);
|
||
return null; // 返回 null 以便后续逻辑处理
|
||
}
|
||
}
|
||
|
||
function streamCommand(command, args, webContents, eventName) {
|
||
return new Promise((resolve, reject) => {
|
||
const process = spawn(command, args, { shell: true });
|
||
|
||
const send = (channel, data) => {
|
||
if (webContents && !webContents.isDestroyed()) {
|
||
webContents.send(channel, data);
|
||
}
|
||
};
|
||
|
||
process.stdout.on("data", (data) => {
|
||
send(eventName, { type: "stdout", data: data.toString() });
|
||
});
|
||
|
||
process.stderr.on("data", (data) => {
|
||
send(eventName, { type: "stderr", data: data.toString() });
|
||
});
|
||
|
||
process.on("close", (code) => {
|
||
if (code === 0) {
|
||
resolve(null);
|
||
} else {
|
||
reject(new Error(`Process exited with code ${code}`));
|
||
}
|
||
});
|
||
|
||
process.on("error", (err) => {
|
||
reject(err);
|
||
});
|
||
});
|
||
}
|